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LE’ITER TO THE EDITOR 

O(n) field theory with n continuous as a model for 
equilibrium polymerisation 

B Duplantier and P Pfeutyt 
Service de Physique Theorique, DPhT, CEN de Saclay, 91191 Gif-sur-Yvette Cedex, 
France 

Received 19 November 1981 

Abstract. A grand canonical ensemble of continuous chains and rings is introduced for 
describing polymerisation equilibrium like that of sulphur. We show its equivalence to 
O(n) field theory, with n continuous, n -* 1. 

Equilibrium polymerisation of open polymer chains has been tentatively described by 
an n-vector lattice model, with n + 0 (Wheeler et a1 1980), with applications to liquid 
sulphur, and liquid sulphur solutions (Wheeler and Pfeuty 1981). However, for 
sulphur, the formation of large rings must be considered (Harris 1970). Lattice models 
of polymerisation including polymer loops have been very recently proposed (Pfeuty 
and Wheeler 1981, Rys and Helfrich 1982, Cordery 1981). 

In the first two papers, an n-vector lattice model was proposed for self-auoiding 
chains and loops, with an anisotropy for 1 components among n. The rather odd limit 
n + 0 , l  fixed, 0 < 1 d 1, was taken. It was conjectured that (a) the critical behaviour 
should be that of an lcomponent model (Pfeuty and Wheeler 1981). In fact, for spin 
models on a lattice, like Sarma’s (1978), the n + 0 limit suppresses loops and crossings 
ut once, which makes it unsuitable for self-avoiding loops on a lattice. The lattice 
model of Cordery (1981), on the other hand, involves chains and loops which can 
cross with a finite interaction energy Ecell. For a unique particular choice of Eall the 
model happens to map onto the Ising model, and (b) corresponds therefore to the 
limit n = 1 = 1. This model presents two difficulties. For a different Eaa, it is no longer 
exactly an Ising model, ‘and (c) the concentration of rings at equilibrium cannot be 
obtained from it. 

In this Letter, we consider a continuous mathematical model of open chains and 
closed rings with any interaction between them. It represents infinitely thin polymers 
in solution. The polymerisation equilibrium is governed by three chemical potentials, 
associated with the number of polymerised links, the number of chains and the number 
of rings. Using functional integrals (Duplantier 1980), we show that this model is 
identical to an O(n) field theory, where n is a continuous variable. This proves 
conjecture (a), where I = n. A physical argument (for sulphur for instance) leads to 
the limit n + l  near the polymerisation point and this agrees with (b). Lastly, the 
concentration of rings is given by differentiating with respect to n, and this solves (c). 
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The grand canonical partition function 1 of the system of continuous chains and 
rings at polymerisation equilibrium is defined by 

* c y  

o r=i 
XI fl dS;exp(-aS;)+Z(S1,. . . ,SA(; S i . .  . , S&) 

where +% is the regularised partition function, with the proper symmetry factors, of 
an interacjing system of Jt continuous chains and 9 continuous polymer rings, of 
Brownian areas S ,  and S i  (for chains made of N discrete links of length I ,  S =NL2). 
9 yields the average total Brownian area (S), the average number (4) of polymer 
chains, and the average number (2) of rings: 

8 
aa 2 ah an (g)= n -1n 2. ( 2 )  
a h a  

( S )  = - In 9, (A)=- -1n2, 

Dimensionally (see below), [ n ]  = io, [ a ]  = I - * ,  [ h ]  = /--'. The fugacities e -", n, h' cor- 
respond (up to dimensional factors due to the continuous limit) to Gibbs factors 
exp(-AF/kT), where the A F  measure the different polymerisation chemical steps 
(see for instance, Pfeuty and Wheeler (1981)). In the present model, we simply assume 
eCa, n, h2 to be functions of T such that 

a(T)+a, '  for T + T,, 

n ( T ) + l  for T -+ T i ,  

( 3 )  

14) 

where a (T) is a decreasing function of T, T, is the critical polymerisation temperature 
and a, the critical value of 'a '  such that ( S )  = 00. Equation (4) is a physical assumption: 
the probability of opening a ring to form a chain, h2 /n ,  equals that of cutting a chain 
into two chains, (h2 ) /h2 .  This holds for very long rings and chains and thus near T,, 
where the polymerised objects are very long. 

Considering (1) as a mathematical object by itself, we show now that it is exactly 
equal to the partition function of an O ( n )  field theory. 

Consider first for simplicity one continuous polymer chain and one continuous 
closed loop, of Brownian areas S and S ' .  Their configurations in &dimensional space 
are given by vectors r ( s ) ,  0 s s s S,  and r . ( s ) ,  0 S s S S ' ,  with r' (0)  = r ' (S ' ) .  The action 
(or energy) associated with the configuration {r, r'} reads 

A{r ,  r ' } =  Ao(r }+Ao{r ' }+AI{r ,  r . } ,  ( 5 )  

+$ jOs' ds Jos' ds' ~ [ r ' ( s ) - - r ' ( s ' ) ] +  JOs ds JOs' ds' V [ r ( s )  --r'(s?].  (7)  

AO is the elastic energy of continuous chains or loops and A I  represents rhe interactions. 
Potentials more general than the excluded volume interaction %", like three-body 
potentials, etc, can be treated by the same method (Duplantier 1980). The regularised 
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partition function +% is defined by the functional integral 

+qs, S') = - 2'i'(S)Si'(S') I dd{r} dd{r*} S[r*(O)-r'(S*)] exp(-A{r, r'}) (8) 2 x 2s '  

where the normalisation factor So of a free chain or loop reads So(S)= 
V-' dd{r} exp(-Ao{r}), V being the total volume. A first factor 4 corresponds to the 
exchange of the extremities of a chain, while the factor 1/2S' corresponds to the 
continuous cyclic invariance of a ring along itself and to the two possible orientations 
of the ring. The regularised partition function +Z(S1, . . . , SA; Si, . . . , SP) of 4 chains 
and 9 rings is defined as in (8), with a symmetry factor 2-&2-' IIEI (Si)-'. At the 
polymerisation equilibrium, there are no topological constraints for rings, which can 
be linked or not (at d = 3), and the whole phase space is accessible in (8). 

For an arbitrary source field J ( x )  (Duplantier 1980), define the Green function 
'sJ of a chain of Brownian area S, the extremities of which are fixed at x and y :  

Taking the trace of (9), Tr 9, = j  ddx gJ(x, x; S'), gives the partition function of a 
ring (without the symmetry factor). Following the method used in Duplantier (1980), 
one can show that (8) takes the very simple form 

'S (S ,  S') = [ exp( -AI{ $I)] 3 ] ddx ddy %(x, y ; S)(2S')-' Tr ~ J ( S * ) / J = O  (10) 

where AI{a/aJ}  is the functional of the differentiation operator a /aJ:  

This operator reconstructs the interaction AI by acting on the chains and loops coupled 
to exterior field J. The regularised partition function of Jtl chains and 2 closed loops 
is given in the same way by 

+%(SI,. . . ,SA; s;, . . . , Sk) 

1 '  
X- n (Si)-' Tr 9J(Si)l . 

2' I = '  J = O  

One must notice that the functional of a/aJ acts on a term which is completely factorised 
in terms of the Jtl chains and the B loops. 

In order to calculate (1) we introduce the Laplace transform of (9) 

GJ = J dS 
0 

and for a ring, the Laplace transform of the partition function 
m 

zJ = I, dS' e-"SS'-' Tr 'sJ(s*). (13) 
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This last integral is naturally logarithmically divergent for S' + 0 and is regularised by 
some mean. In particular, a suitable regularisation is provided by introducing a 
minimal Brownian area so for a loop and replacing 5," dS' by jsT dS'. 

Inserting (1 l), (12), (13) into (1) gives immediately 

2 (n, a; h )  = [ exp( -AI( $I)] exp( :h ddx d'yGJ (x, Y 1 + 5 iJ) 1 
J - 0  

(14) 

GJ can be calculated directly with the help of definitions (12), (9). It is also well 
known from the correspondence between n = 0 field theory and polymer chain theory 
(de Gennes 1972, des Cloizeaux 1975, Emery 1975). We have, in the sense of 
integro-differential operators (Duplantier 1980), 

G ~ ( x ,  y ) = ( - A + a - J ( x )  S(X-Y) ) - '  (151 

where A is the Laplacian A = a/ax: + a - - + d/dx:. For J = 0, one recovers the propa- 
gator of a free field. The factor zJ,  (13), sztisfies dzJ/du = -Tr Gj, and integrating 
(15) formally with respect to ' U '  gives 

t 16) 

(a more refined calculation of zJ, (13), with the minimal area so, gives for so+O, 
zJ = -CV +Tr In Gj/sO (C: Euler's constant)). 

We finally find for the grand partition function 22 (14), using exp(Tr In G )  = det G, 

Z J  =Tr  In Gj 

2 = [ exp(-AI{ $])](det GJ)n'2 exp(fh2 ddx ddy G ~ ( x ,  y)) 1 . 
J = O  

Consider now an O ( n )  field theory given by the action 

A{cp}=i 5 ddXcp,(x)(-A+u)cp,(x)+~ ddx ddv(P2~x)~'(X-y)(p2(y), 118) 
J = 1  5 

where cp2=Xy=1 (cp,)'. The partition function of this field theory, in an external field 
h, = SJlh,  in the j = 1 direction, is defined by 

z,(u, h ) =  J d"{q}exp(-A{q}+hj ddxql(xi). (19'1 

Introducing a source field J ( x )  associated with the squared field cp2(x) (Fisher 1973), 
it has been shown (Duplantier 1980) that 2, has exactly the form (17). 

Thus we have 

2 ( n , a , h ) = Z , ( a , h )  

where n can be a continuous variable. 

Remarks 

(1) Symmetry factors are essential. For a loop (factor 1/2S'), factor 1/S' in (13) 
gives the logarithm in (16), and factor leads to the exponent n /2  in (17). 

(2) The proof is quite general. In the physical case of polymerisation of sulphur, 
one takes at the end h small and n + 1. One could generalise to 0 < n < 1 by considering 
the formation of loops as less probable than that of chains. 
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A possible check is provided by the specific heat measurements for liquid sulphur 
(West 1959, Feher et a1 1971). Near a critical point, the specific heat C is given by 

c* =A*(~T- T,I/T,)-"(")+B (21) 
where A+ corresponds to T i  and A- to T:. AC/A-(n)  and a ( n )  are universal and 
known (Bervillier 1976). The measurements cited above are not precise enough for 
distinguishing between (Y (0) = 0.236 and a (1) = 0.166. Cordery's fit for n = 1 is reason- 
ably good, but too high a value for n = 1, A'/A-=0.6, seems to have been taken. 
For A'/A-==0.5 with n = 1, a value consistent with E expansions (Bervillier 1976), 
and with a tentative inclusion of corrections to scaling (Chang and Houghton 1980), 
the fit is slightly less good, especially below T,, where A+ seems to be slightly higher 
than the theoretical prediction. Because A+/A- - n one could even be tempted to 
take a value of n slightly higher than 1; however, more precise measures near the 
polymerisation temperature are certainly needed. 

From a theoretical point of view, we have proved the isomorphism of a grand 
canonical set of continuous chains and rings to an O(n) field theory, where n is 
continuous and can be differentiated. This relates mathematically a model of equili- 
brium polymerisation to standard field theory. Conversely, the latter can always be 
interpreted in terms of chains and rings. One could for instance derive exact results 
for chains and rings at d = 1 from the exact solution for the O(n) model at d = 1 
(Balian and Toulouse 1974). The model presented here can also be related to field 
theoretic models for branched polymers (Lubensky and Isaacson 1981). 

We thank J Wheeler for interesting discussions, in particular about the physical 
argument leading to equation (4). 
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